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Abstract:

The simulations on ELMs with Multi-field peeling-ballooning (P-B) mode using BOUT++
code are reported in this paper. In the purpose of studying the particle and energy transport
in the pedestal region, the pressure equation is separated into ion density, ion and electron
temperature equations. Through the simulations, the length scale Ln of the gradient of
equilibrium density ni0 is found to destabilize the P-B modes in ideal MHD model. With
diamagnetic effects, the growth rate is inversely proportional to ni0 at medium toroidal
mode number n. For the nonlinear simulations, the gradient of ni0 in the pedestal region
can increase the ELM size more than doubled. The six-field model based on full Braginskii
equations are developed for the purpose of studying turbulence caused by drift waves. This
model can localize the perturbations at peak gradient region compared with five-field model.

1 Introduction

To assess the performance requirements of future tokamaks, such as ITER, one must
study [1] discharges in the high edge particle and energy confinement regime known as
H-mode [2]. In ELMy H-mode, localized edge modes (ELMs) are triggered by ideal MHD
instabilities. The type I ELM is successfully explained by ideal peeling-ballooning (P-B)
theory in the pedestal [3], whereby the steep pressure gradients drive ballooning modes
and bootstrap current generates peeling modes. The linear understanding of the P-B
mode has been well developed by study with numerical codes such as ELITE [4, 5] and
GATO [6]. However, linear stability analysis alone is not enough to describe the whole
picture of ELM physics. The nonlinear phase is also very important for ELM studies.
Some 3D codes have been developed for the nonlinear simulation of ELMs, including
NIMROD [7, 8], BOUT [9, 10], JOREK [11], etc..

The BOUT++ code has successfully simulated the nonlinear crash phase of ELMs
[12, 13, 14, 15]. In the previous work, anomalous electron viscosity or hyper-resistivity
is applied into Ohm’s law. This method resolves the computational difficulty of the fine
resolution requirement for ideal MHD instabilities with high Lundquist number. The
four-field two-fluid model has been developed as the extension of the previous three-field
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peeling-ballooning model with the addition of perturbed parallel velocity [16]. The E×B
shear flow plays a dual role on peeling-ballooning modes and they subsequently triggered
ELM crashes [17].

In this paper we develop the nonlinear simulations of five-field peeling-ballooning
model with BOUT++ code based on the reduced MHD model [18]. The inhomoge-
neous effects of ion density is taken into the considerations. The evolving variables are
ion density, ion temperature, electron temperature, vorticity and magnetic flux. In order
to simulate the physics in real tokamaks, including P-B modes and turbulence caused by
electron drift waves and ion acoustic waves, the six-field two-fluid model based on Bra-
ginskii equations are also presented. Both linear and nonlinear simulation results will be
discussed.

This paper is organized in the following way. In Sec. 2 the dynamic equations of
five-field model and both linear and nonlinear simulations are introduced. Sec. 3 shows
the simulation results of six-field model. Sec. 4 is the conclusion.

2 Five-field simulations

2.1 Theoretic equations

The five-field two-fluid nonlinear equations are applied to simulate the plasma edge
pedestal collapse of tokamak in our model. Based on the peeling-ballooning model with
non-ideal physics effects, including diamagnetic drift, E × B drift, resistivity and hyper-
resistivity, a set of nonlinear evolution equations for perturbations of the ion number
density ni, ion temperature Ti, electron temperature Te, vorticity ϖ and magnetic flux ψ
is written as

∂ni

∂t
+VE · ∇ni = 0, (1)

∂Tj
∂t

+VE · ∇Tj = ∇∥
(
κ∥j∇∥Tj

)
, (2)

∂

∂t
ϖ +VE · ∇ϖ = B0b · ∇

J∥
B0

+ 2b0 × κ · ∇P, (3)

∂ψ

∂t
= − 1

B0

b · ∇Φ +
η

µ0

∇2
⊥ψ − ηH

µ0

∇4
⊥ψ, (4)

ϖ = ni0
mi

B0

[
∇2

⊥ϕ+
1

ni0

∇⊥ϕ · ∇⊥ni0 +
1

ni0Zie
∇2

⊥p

]
. (5)

Here the magnetic flux ψ = A∥/B0, A∥ is the parallel vector potential, b = b0 +∇ψ×b0

and κ = b0 · ▽b0. J∥ = J∥0 − 1
µ0
∇2

⊥(B0ψ), VE = 1
B0

(b0 ×∇⊥Φ), P = kBn(Ti + Te)
and Φ = Φ0 +ϕ. The hyper-resistivity ηH , also called anomalous electron viscosity, could
be significant for collisionless cases. The total time derivative is d

dt
= ∂

∂t
+ vE ·▽. Here

for the simple model, both equilibrium flow and turbulent zonal flow have been set to be
zero. The coefficients κ∥j in Eq. (2) are the parallel thermal conductivity for j particle,
and will be discussed lately. The Eqs. (1) - (5) are solved within the field aligned (flux)
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coordinate system (x, y, z) with the shift radial derivatives [13]. Notice that this model
is the simplest form with nonlinear effects to specify the influences of density during the
ELM crash clearly. The electron Hall effects, compressible terms and energy flux are all
neglected for this reason.

The inner boundary conditions on x direction used here are Neumann for ni, Tj and
ϖ, and their outter boundary is Dirichlet. The boundary for ψ is zero-Laplacian and
ϖ is Dirichlet on both inner and outter boundary. For all variables, the y direction is
twisted-shifted periodic and z is periodic. The initial perturbation is Gaussian on x and
y directions, and sinusoidal on z direction.

2.2 Simulation results

The shifted circular cross-section toroidal equilibria (cbm18 dens8) with the aspect ratio
of 2.9 generated by TOQ code[19] is applied in this paper. In the analysis below, we
choose the analytical profiles of ni0 as

ni0(x) =
(n0height × nped)

2

[
1− tanh

(
x− xped
∆xped

)]
+ n0ave × nped, (6)

here nped is the ion number density on the top of the pedestal region, n0ave is the ratio to
control the bottom amplitude of ni0 outside the separatrix, and n0height is the coefficient
to specify the gradient of ni0. xped and ∆xped represent the position of peak gradient and
the width of pedestal region of P0 respectively.

In this five-field model, the most important difference is the introduction of the the
second term in RHS of Eq. (5), which represents the density length scale. This term still
appears in ideal MHD model when the density profile varies spatially, especially in radial
direction. Based on the localized analysis from Eqs. (1) to (5), the linear growth rate can
be written as

γTc

ωA

= −iIm(ωTc)

ωA

≃ γnc
ωA

(
1 +

1

8k2⊥L
2
n

)
, (7)

where γnc is the growth rate for ideal MHD when density is spatially homogeneous. Ln =
1
ni0

∂ni0

∂r
is the characteristic length scale of ion density. Notice that k2⊥L

2
n ∼ 104 ≫ 1.

Eq. (7) shows that if the gradient of ni0 is considered, the normalized linear growth rate
is affected by 1/L2

n. In simulations, the different density profiles with different radial
gradient but the same value at peak gradient point are applied. The results are shown
as the solid lines in the right panel of Fig. 1. The dashed lines are the theoretical fitting
according to Eq. (7), and they are consistent with the simulations. Therefore, Ln can
increase the linear growth rate.

The normalized linear growth rate γ/ωA is independent of ni0 for the ideal MHD
theory. In the simulations, the constant ni0 profiles are applied in the right panel of Fig.
1. For these lines, n0height from Eq. (6) are zero and n0ave are chosen as shown in the
figure. The dashed lines are the linear growth rates of ideal MHD model for these profiles.
They are all the same no matter what value ni0 is. However, if the diamagnetic effects are
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FIG. 1: Left: the normalized linear growth rate for different Ln in ideal MHD model.
The dashed lines in right panel are the theoretical fitting according to Eq. (7). Right:
the normalized linear growth rate for constant ni0 cases. The dashed lines are ideal MHD
results.

taken into account, ω∗ plays as the threshold of the perturbation [20]. Therefore, larger
ni0 leads to smaller differences of γ/ωA from ideal MHD results. This effect is also shown
by the solid lines in the left panel of Fig. 1.

For the nonlinear simulations, we have to take the diamagnetic drift, resistivity and the
anomalous electron viscosity into considerations [12]. The Lundquist number S and hyper
Lundquist number SH are set as S = µ0R0vA/η = 108 and SH = µ0R

3
0vA/ηH = 1012, here

SH is introduced by hyper-resistivity. Five models with the different coefficients in Eq.
(6) are chosen as: Case 0: n0ave = 0.12, n0height = 0; Case 1: n0ave = 0.02, n0height = 0.24;
Case 2: n0ave = 0.02, n0height = 0.30; Case 3: n0ave = 0.02, n0height = 0.45 and Case
0’: Ti0 = 1keV. Notice that Case 0 is the same to the previous three-field model. Here
we also consider the cases with the Dirichlet inner boundary condition on ni, Ti and Te
for comparison, named as Case 1’, 2’ and 3’, which have all the same coefficients and
equilibrium profiles as Case 1, 2 and 3 respectively.

The left panel of Fig. 2 gives the radial pressure profiles in the outter mid-plane
at 175TA when all of the cases have passed through the nonlinear collapse phase. The
perturbations for Case 0 are constraint at the pressure peak gradient region. However, for
the other cases which include the gradient of ni0, the collapse achieves the inner boundary,
no matter what kind of boundary condition is applied. This indicates that the length scale
term of Eq. (5), plays as an additional driving source of the electric potential ϕ on the
perpendicular direction and drives the perturbations to go into the core region. The right
panel of Fig. 2 shows the time evolution of ELM size in different models. Because of the
penetrations, the ELM sizes are increased almost twice as the previous three-field model.

In order to study the energy flux on the divertor plate, the classical thermal conduc-
tivities κ∥j in collisional limit are necessary for this model. They are defined by

κ∥i = 3.9
v2th,i
νi

, κ∥e = 3.2
v2th,e
νe

, (8)

where vth,j is the thermal velocity for j particle and νj is the collision rate. Since in
hot pedestal the collisionality is low and κ∥j could be extremely larger than the real
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FIG. 2: Left: the pressure profiles after nonlinear crash at the outter mid-plane. Right:
ELM size evolution for the previous three-field (black), five-field for Case 2(blue), five-field
with κ∥j for Case 2 (red) and six-filed for Case 2 (green).

experiment, the flux limited expression κfl,j = vth,jq95R0 is taken into account of kinetic
effects. For the linear effects of thermal conductivities, γ/ωA is decreased by around
25.0%. They can effectively decrease the growth of ELM size by 33.3%, as the red line
shown in the right panel of Fig. 2. This is because that they can prevent the pressure
perturbations to propagate to the inner boundary.

3 Six-field simulations

The six-field model is derived directly from Braginskii equations in drift ordering [21, 22].
The non-ideal MHD terms are all kept, such as energy flux, electron-ion friction forces,
energy exchange and gyro-viscosity. The equations of this model are written as

∂

∂t
ϖ = −

(
1

B0

b×∇⊥Φ

)
·∇ϖ +B2∇∥

(
J∥
B

)
+ 2b× κ ·∇Pi

− 1

2Ωi

[
1

B
b×∇Pi ·∇

(
∇2

⊥Φ
)
− ZieBb×∇ni ·∇

(
∇⊥Φ

B

)2
]

+
1

2Ωi

[
1

B
b×∇Φ ·∇

(
∇2

⊥Pi

)
−∇2

⊥

(
1

B
b×∇Φ ·∇Pi

)]
, (9)

∂

∂t
ni = −

(
1

B0

b×∇⊥Φ

)
· ∇ni

−2ni

B
b× κ ·∇Φ− 2

ZieB
b× κ ·∇P − niB∇∥

(
V∥i
B

)
, (10)

∂

∂t
V∥i = −

(
1

B
b×∇⊥Φ

)
·∇V∥i −

1

mini

∇∥P, (11)
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FIG. 3: The linear growth rate for five- and six-field models.

∂

∂t
ψ = − 1

B
∇∥ϕ+

η

µ0

∇2
⊥ψ +

1

eneB
∇∥Pe +

0.71kB
eB

∇∥Te −
ηH
µ0

∇4
⊥ψ, (12)

∂

∂t
Ti = −

(
1

B
b×∇⊥Φ

)
·∇Ti +

2me

mi

Zi

τe
(Te − Ti)

−2

3
Ti

[(
2

B
b× κ

)
·
(
∇Φ +

1

Zieni

∇Pi +
5

2

kB
Zie

∇Ti

)
+B∇∥

(
V∥i
B

)]
+

2

3nikB
∇∥

(
κ∥i∇∥Ti

)
+

2

3nikB
∇⊥ (κ⊥i∇⊥Ti) , (13)

∂

∂t
Te = −

(
1

B
b×∇⊥Φ

)
·∇Te

−2

3
Te

[(
2

B
b× κ

)
·
(
∇Φ− 1

ene

∇Pe −
5

2

kB
e
∇Te

)
+B∇∥

(
V∥e
B

)]
+0.71

2Te
3ene

B∇∥

(
J∥
B

)
− 2me

mi

1

τe
(Te − Ti) +

2

3nekB
η∥J

2
∥

+
2

3nekB
∇∥

(
κ∥e∇∥Te

)
+

2

3nekB
∇∥ (κ⊥e∇⊥Te) . (14)

Notice that the thermal conductivities is defined by Eq. (8) within flux limited expres-
sions, and Spitzer resistivity are applied instead of constant Lundquist number in this
model. Compared with five-field model, the most important differences is the appearance
of parallel ion velocity equation. Another difference is the gyro viscosity, as shown in
the last two lines of Eq. (9), which is added as the modification of gyro kinetic effects.
Within this model, the studies of boundary turbulence caused by electron drift waves and
ion acoustic waves are feasible, which are neglected in five- and three-field models.

For the linear simulations, Fig. 3 gives the comparison to five-field model. The profiles
of density and temperature are chosen as Case 2 mentioned in Sec. 2.2. If taking out
the gyro-viscous terms and κ∥j, the six-field model can decrease γ/ωA by 10.1%, most of
the stabilizing effects are provided by the compressible terms, as b× κ ·∇ in Eqs. (10),
(13) and (14), shown as the cyan line in Fig. 3. The gyro-viscous terms have obvious
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FIG. 4: Left: the density perturbation structures at saturating phase after ELM crash for
five-field model, t = 300TA. Right: the density perturbation structures at the same time
for six-field model. Red means positive perturbation and blue is for negative.

stabilizing effects and decrease γ/ωA by 16.7%. κ∥j dominates the electron temperature
equations and increases it by 9.7%.

The ELM size is shown as the green line in the right panel of Fig. 2. Compared with
five-field model, the ELM size is decreased by around 50.0% and is more similar to the
three field simulations. The mode structures of ion density perturbations at saturating
phase after ELM crash for both five-field and six-field are shown in Fig. (4). The left panel
of six-field model shows much more narrow modes than five-field and no perturbations can
arrive the inner boundary. Both the gyro-viscosity and thermal conductivities constrain
the growth of perturbations at inner boundary.

4 Conclusions

The multi-field two-fluid model are developed for the peeling-ballooning simulations with
BOUT++ code. This model introduces the effects of ion density profile, including both
gradient and quantity of ni0. The gradient length scale Ln of ni0 can slightly destabilize
the perturbations for ideal MHD, but the larger ni0 leads to smaller differences of γ/ωA

from ideal model at medium mode number n, when diamagnetic effects are taken into
account. For nonlinear simulations, Ln causes as twice ELM size as the previous model
because it drives the perturbations to propagate into the inner boundary. This driving
effects can be suppressed by either thermal conductivities effectively or full Braginskii
six-field model. Compared with five-field model, the six-field model derives much smaller
ELM size and more localized mode structures.
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